<?php
|
|
namespace PhpOffice\PhpSpreadsheet\Calculation\Statistical;
|
|
use PhpOffice\PhpSpreadsheet\Calculation\ArrayEnabled;
|
use PhpOffice\PhpSpreadsheet\Calculation\Exception;
|
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
|
use PhpOffice\PhpSpreadsheet\Calculation\Information\ExcelError;
|
use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;
|
|
class Trends
|
{
|
use ArrayEnabled;
|
|
private static function filterTrendValues(array &$array1, array &$array2): void
|
{
|
foreach ($array1 as $key => $value) {
|
if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
|
unset($array1[$key], $array2[$key]);
|
}
|
}
|
}
|
|
/**
|
* @param mixed $array1 should be array, but scalar is made into one
|
* @param mixed $array2 should be array, but scalar is made into one
|
*/
|
private static function checkTrendArrays(mixed &$array1, mixed &$array2): void
|
{
|
if (!is_array($array1)) {
|
$array1 = [$array1];
|
}
|
if (!is_array($array2)) {
|
$array2 = [$array2];
|
}
|
|
$array1 = Functions::flattenArray($array1);
|
$array2 = Functions::flattenArray($array2);
|
|
self::filterTrendValues($array1, $array2);
|
self::filterTrendValues($array2, $array1);
|
|
// Reset the array indexes
|
$array1 = array_merge($array1);
|
$array2 = array_merge($array2);
|
}
|
|
protected static function validateTrendArrays(array $yValues, array $xValues): void
|
{
|
$yValueCount = count($yValues);
|
$xValueCount = count($xValues);
|
|
if (($yValueCount === 0) || ($yValueCount !== $xValueCount)) {
|
throw new Exception(ExcelError::NA());
|
} elseif ($yValueCount === 1) {
|
throw new Exception(ExcelError::DIV0());
|
}
|
}
|
|
/**
|
* CORREL.
|
*
|
* Returns covariance, the average of the products of deviations for each data point pair.
|
*
|
* @param mixed $yValues array of mixed Data Series Y
|
* @param null|mixed $xValues array of mixed Data Series X
|
*/
|
public static function CORREL(mixed $yValues, $xValues = null): float|string
|
{
|
if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {
|
return ExcelError::VALUE();
|
}
|
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getCorrelation();
|
}
|
|
/**
|
* COVAR.
|
*
|
* Returns covariance, the average of the products of deviations for each data point pair.
|
*
|
* @param mixed[] $yValues array of mixed Data Series Y
|
* @param mixed[] $xValues array of mixed Data Series X
|
*/
|
public static function COVAR(array $yValues, array $xValues): float|string
|
{
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getCovariance();
|
}
|
|
/**
|
* FORECAST.
|
*
|
* Calculates, or predicts, a future value by using existing values.
|
* The predicted value is a y-value for a given x-value.
|
*
|
* @param mixed $xValue Float value of X for which we want to find Y
|
* Or can be an array of values
|
* @param mixed[] $yValues array of mixed Data Series Y
|
* @param mixed[] $xValues array of mixed Data Series X
|
*
|
* @return array|bool|float|string If an array of numbers is passed as an argument, then the returned result will also be an array
|
* with the same dimensions
|
*/
|
public static function FORECAST(mixed $xValue, array $yValues, array $xValues)
|
{
|
if (is_array($xValue)) {
|
return self::evaluateArrayArgumentsSubset([self::class, __FUNCTION__], 1, $xValue, $yValues, $xValues);
|
}
|
|
try {
|
$xValue = StatisticalValidations::validateFloat($xValue);
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getValueOfYForX($xValue);
|
}
|
|
/**
|
* GROWTH.
|
*
|
* Returns values along a predicted exponential Trend
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
* @param mixed[] $newValues Values of X for which we want to find Y
|
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
|
*
|
* @return array<int, array<int, array<int, float>>>
|
*/
|
public static function GROWTH(array $yValues, array $xValues = [], array $newValues = [], mixed $const = true): array
|
{
|
$yValues = Functions::flattenArray($yValues);
|
$xValues = Functions::flattenArray($xValues);
|
$newValues = Functions::flattenArray($newValues);
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
|
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
|
if (empty($newValues)) {
|
$newValues = $bestFitExponential->getXValues();
|
}
|
|
$returnArray = [];
|
foreach ($newValues as $xValue) {
|
$returnArray[0][] = [$bestFitExponential->getValueOfYForX($xValue)];
|
}
|
|
return $returnArray;
|
}
|
|
/**
|
* INTERCEPT.
|
*
|
* Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
*/
|
public static function INTERCEPT(array $yValues, array $xValues): float|string
|
{
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getIntersect();
|
}
|
|
/**
|
* LINEST.
|
*
|
* Calculates the statistics for a line by using the "least squares" method to calculate a straight line
|
* that best fits your data, and then returns an array that describes the line.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param null|mixed[] $xValues Data Series X
|
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
|
* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
|
*
|
* @return array|string The result, or a string containing an error
|
*/
|
public static function LINEST(array $yValues, ?array $xValues = null, mixed $const = true, mixed $stats = false): string|array
|
{
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
|
if ($xValues === null) {
|
$xValues = $yValues;
|
}
|
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
|
|
if ($stats === true) {
|
return [
|
[
|
$bestFitLinear->getSlope(),
|
$bestFitLinear->getIntersect(),
|
],
|
[
|
$bestFitLinear->getSlopeSE(),
|
($const === false) ? ExcelError::NA() : $bestFitLinear->getIntersectSE(),
|
],
|
[
|
$bestFitLinear->getGoodnessOfFit(),
|
$bestFitLinear->getStdevOfResiduals(),
|
],
|
[
|
$bestFitLinear->getF(),
|
$bestFitLinear->getDFResiduals(),
|
],
|
[
|
$bestFitLinear->getSSRegression(),
|
$bestFitLinear->getSSResiduals(),
|
],
|
];
|
}
|
|
return [
|
$bestFitLinear->getSlope(),
|
$bestFitLinear->getIntersect(),
|
];
|
}
|
|
/**
|
* LOGEST.
|
*
|
* Calculates an exponential curve that best fits the X and Y data series,
|
* and then returns an array that describes the line.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param null|mixed[] $xValues Data Series X
|
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
|
* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics
|
*
|
* @return array|string The result, or a string containing an error
|
*/
|
public static function LOGEST(array $yValues, ?array $xValues = null, mixed $const = true, mixed $stats = false): string|array
|
{
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
|
if ($xValues === null) {
|
$xValues = $yValues;
|
}
|
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
foreach ($yValues as $value) {
|
if ($value < 0.0) {
|
return ExcelError::NAN();
|
}
|
}
|
|
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
|
|
if ($stats === true) {
|
return [
|
[
|
$bestFitExponential->getSlope(),
|
$bestFitExponential->getIntersect(),
|
],
|
[
|
$bestFitExponential->getSlopeSE(),
|
($const === false) ? ExcelError::NA() : $bestFitExponential->getIntersectSE(),
|
],
|
[
|
$bestFitExponential->getGoodnessOfFit(),
|
$bestFitExponential->getStdevOfResiduals(),
|
],
|
[
|
$bestFitExponential->getF(),
|
$bestFitExponential->getDFResiduals(),
|
],
|
[
|
$bestFitExponential->getSSRegression(),
|
$bestFitExponential->getSSResiduals(),
|
],
|
];
|
}
|
|
return [
|
$bestFitExponential->getSlope(),
|
$bestFitExponential->getIntersect(),
|
];
|
}
|
|
/**
|
* RSQ.
|
*
|
* Returns the square of the Pearson product moment correlation coefficient through data points
|
* in known_y's and known_x's.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
*
|
* @return float|string The result, or a string containing an error
|
*/
|
public static function RSQ(array $yValues, array $xValues)
|
{
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getGoodnessOfFit();
|
}
|
|
/**
|
* SLOPE.
|
*
|
* Returns the slope of the linear regression line through data points in known_y's and known_x's.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
*
|
* @return float|string The result, or a string containing an error
|
*/
|
public static function SLOPE(array $yValues, array $xValues)
|
{
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getSlope();
|
}
|
|
/**
|
* STEYX.
|
*
|
* Returns the standard error of the predicted y-value for each x in the regression.
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
*/
|
public static function STEYX(array $yValues, array $xValues): float|string
|
{
|
try {
|
self::checkTrendArrays($yValues, $xValues);
|
self::validateTrendArrays($yValues, $xValues);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
|
return $bestFitLinear->getStdevOfResiduals();
|
}
|
|
/**
|
* TREND.
|
*
|
* Returns values along a linear Trend
|
*
|
* @param mixed[] $yValues Data Series Y
|
* @param mixed[] $xValues Data Series X
|
* @param mixed[] $newValues Values of X for which we want to find Y
|
* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not
|
*
|
* @return array<int, array<int, array<int, float>>>
|
*/
|
public static function TREND(array $yValues, array $xValues = [], array $newValues = [], mixed $const = true): array
|
{
|
$yValues = Functions::flattenArray($yValues);
|
$xValues = Functions::flattenArray($xValues);
|
$newValues = Functions::flattenArray($newValues);
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
|
if (empty($newValues)) {
|
$newValues = $bestFitLinear->getXValues();
|
}
|
|
$returnArray = [];
|
foreach ($newValues as $xValue) {
|
$returnArray[0][] = [$bestFitLinear->getValueOfYForX($xValue)];
|
}
|
|
return $returnArray;
|
}
|
}
|