<?php
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
|
abstract class BestFit
|
{
|
/**
|
* Indicator flag for a calculation error.
|
*/
|
protected bool $error = false;
|
|
/**
|
* Algorithm type to use for best-fit.
|
*/
|
protected string $bestFitType = 'undetermined';
|
|
/**
|
* Number of entries in the sets of x- and y-value arrays.
|
*/
|
protected int $valueCount;
|
|
/**
|
* X-value dataseries of values.
|
*
|
* @var float[]
|
*/
|
protected array $xValues = [];
|
|
/**
|
* Y-value dataseries of values.
|
*
|
* @var float[]
|
*/
|
protected array $yValues = [];
|
|
/**
|
* Flag indicating whether values should be adjusted to Y=0.
|
*/
|
protected bool $adjustToZero = false;
|
|
/**
|
* Y-value series of best-fit values.
|
*
|
* @var float[]
|
*/
|
protected array $yBestFitValues = [];
|
|
protected float $goodnessOfFit = 1;
|
|
protected float $stdevOfResiduals = 0;
|
|
protected float $covariance = 0;
|
|
protected float $correlation = 0;
|
|
protected float $SSRegression = 0;
|
|
protected float $SSResiduals = 0;
|
|
protected float $DFResiduals = 0;
|
|
protected float $f = 0;
|
|
protected float $slope = 0;
|
|
protected float $slopeSE = 0;
|
|
protected float $intersect = 0;
|
|
protected float $intersectSE = 0;
|
|
protected float $xOffset = 0;
|
|
protected float $yOffset = 0;
|
|
public function getError(): bool
|
{
|
return $this->error;
|
}
|
|
public function getBestFitType(): string
|
{
|
return $this->bestFitType;
|
}
|
|
/**
|
* Return the Y-Value for a specified value of X.
|
*
|
* @param float $xValue X-Value
|
*
|
* @return float Y-Value
|
*/
|
abstract public function getValueOfYForX(float $xValue): float;
|
|
/**
|
* Return the X-Value for a specified value of Y.
|
*
|
* @param float $yValue Y-Value
|
*
|
* @return float X-Value
|
*/
|
abstract public function getValueOfXForY(float $yValue): float;
|
|
/**
|
* Return the original set of X-Values.
|
*
|
* @return float[] X-Values
|
*/
|
public function getXValues(): array
|
{
|
return $this->xValues;
|
}
|
|
/**
|
* Return the Equation of the best-fit line.
|
*
|
* @param int $dp Number of places of decimal precision to display
|
*/
|
abstract public function getEquation(int $dp = 0): string;
|
|
/**
|
* Return the Slope of the line.
|
*
|
* @param int $dp Number of places of decimal precision to display
|
*/
|
public function getSlope(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->slope, $dp);
|
}
|
|
return $this->slope;
|
}
|
|
/**
|
* Return the standard error of the Slope.
|
*
|
* @param int $dp Number of places of decimal precision to display
|
*/
|
public function getSlopeSE(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->slopeSE, $dp);
|
}
|
|
return $this->slopeSE;
|
}
|
|
/**
|
* Return the Value of X where it intersects Y = 0.
|
*
|
* @param int $dp Number of places of decimal precision to display
|
*/
|
public function getIntersect(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->intersect, $dp);
|
}
|
|
return $this->intersect;
|
}
|
|
/**
|
* Return the standard error of the Intersect.
|
*
|
* @param int $dp Number of places of decimal precision to display
|
*/
|
public function getIntersectSE(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->intersectSE, $dp);
|
}
|
|
return $this->intersectSE;
|
}
|
|
/**
|
* Return the goodness of fit for this regression.
|
*
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getGoodnessOfFit(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->goodnessOfFit, $dp);
|
}
|
|
return $this->goodnessOfFit;
|
}
|
|
/**
|
* Return the goodness of fit for this regression.
|
*
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getGoodnessOfFitPercent(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->goodnessOfFit * 100, $dp);
|
}
|
|
return $this->goodnessOfFit * 100;
|
}
|
|
/**
|
* Return the standard deviation of the residuals for this regression.
|
*
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getStdevOfResiduals(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->stdevOfResiduals, $dp);
|
}
|
|
return $this->stdevOfResiduals;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getSSRegression(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->SSRegression, $dp);
|
}
|
|
return $this->SSRegression;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getSSResiduals(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->SSResiduals, $dp);
|
}
|
|
return $this->SSResiduals;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getDFResiduals(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->DFResiduals, $dp);
|
}
|
|
return $this->DFResiduals;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getF(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->f, $dp);
|
}
|
|
return $this->f;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getCovariance(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->covariance, $dp);
|
}
|
|
return $this->covariance;
|
}
|
|
/**
|
* @param int $dp Number of places of decimal precision to return
|
*/
|
public function getCorrelation(int $dp = 0): float
|
{
|
if ($dp != 0) {
|
return round($this->correlation, $dp);
|
}
|
|
return $this->correlation;
|
}
|
|
/**
|
* @return float[]
|
*/
|
public function getYBestFitValues(): array
|
{
|
return $this->yBestFitValues;
|
}
|
|
protected function calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const): void
|
{
|
$SSres = $SScov = $SStot = $SSsex = 0.0;
|
foreach ($this->xValues as $xKey => $xValue) {
|
$bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
$SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
|
if ($const === true) {
|
$SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
|
} else {
|
$SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
|
}
|
$SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
|
if ($const === true) {
|
$SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
|
} else {
|
$SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
|
}
|
}
|
|
$this->SSResiduals = $SSres;
|
$this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);
|
|
if ($this->DFResiduals == 0.0) {
|
$this->stdevOfResiduals = 0.0;
|
} else {
|
$this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
|
}
|
|
if ($SStot == 0.0 || $SSres == $SStot) {
|
$this->goodnessOfFit = 1;
|
} else {
|
$this->goodnessOfFit = 1 - ($SSres / $SStot);
|
}
|
|
$this->SSRegression = $this->goodnessOfFit * $SStot;
|
$this->covariance = $SScov / $this->valueCount;
|
$this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
|
$this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
|
$this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
|
if ($this->SSResiduals != 0.0) {
|
if ($this->DFResiduals == 0.0) {
|
$this->f = 0.0;
|
} else {
|
$this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
|
}
|
} else {
|
if ($this->DFResiduals == 0.0) {
|
$this->f = 0.0;
|
} else {
|
$this->f = $this->SSRegression / $this->DFResiduals;
|
}
|
}
|
}
|
|
/** @return float|int */
|
private function sumSquares(array $values)
|
{
|
return array_sum(
|
array_map(
|
fn ($value): float|int => $value ** 2,
|
$values
|
)
|
);
|
}
|
|
/**
|
* @param float[] $yValues
|
* @param float[] $xValues
|
*/
|
protected function leastSquareFit(array $yValues, array $xValues, bool $const): void
|
{
|
// calculate sums
|
$sumValuesX = array_sum($xValues);
|
$sumValuesY = array_sum($yValues);
|
$meanValueX = $sumValuesX / $this->valueCount;
|
$meanValueY = $sumValuesY / $this->valueCount;
|
$sumSquaresX = $this->sumSquares($xValues);
|
$sumSquaresY = $this->sumSquares($yValues);
|
$mBase = $mDivisor = 0.0;
|
$xy_sum = 0.0;
|
for ($i = 0; $i < $this->valueCount; ++$i) {
|
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
if ($const === true) {
|
$mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);
|
$mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);
|
} else {
|
$mBase += $xValues[$i] * $yValues[$i];
|
$mDivisor += $xValues[$i] * $xValues[$i];
|
}
|
}
|
|
// calculate slope
|
$this->slope = $mBase / $mDivisor;
|
|
// calculate intersect
|
$this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;
|
|
$this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);
|
}
|
|
/**
|
* Define the regression.
|
*
|
* @param float[] $yValues The set of Y-values for this regression
|
* @param float[] $xValues The set of X-values for this regression
|
*/
|
public function __construct(array $yValues, array $xValues = [])
|
{
|
// Calculate number of points
|
$yValueCount = count($yValues);
|
$xValueCount = count($xValues);
|
|
// Define X Values if necessary
|
if ($xValueCount === 0) {
|
$xValues = range(1, $yValueCount);
|
} elseif ($yValueCount !== $xValueCount) {
|
// Ensure both arrays of points are the same size
|
$this->error = true;
|
}
|
|
$this->valueCount = $yValueCount;
|
$this->xValues = $xValues;
|
$this->yValues = $yValues;
|
}
|
}
|