<?php
|
|
namespace PhpOffice\PhpSpreadsheet\Calculation\Statistical\Distributions;
|
|
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
|
use PhpOffice\PhpSpreadsheet\Calculation\Information\ExcelError;
|
|
abstract class GammaBase
|
{
|
private const LOG_GAMMA_X_MAX_VALUE = 2.55e305;
|
|
private const EPS = 2.22e-16;
|
|
private const MAX_VALUE = 1.2e308;
|
|
private const SQRT2PI = 2.5066282746310005024157652848110452530069867406099;
|
|
private const MAX_ITERATIONS = 256;
|
|
protected static function calculateDistribution(float $value, float $a, float $b, bool $cumulative): float
|
{
|
if ($cumulative) {
|
return self::incompleteGamma($a, $value / $b) / self::gammaValue($a);
|
}
|
|
return (1 / ($b ** $a * self::gammaValue($a))) * $value ** ($a - 1) * exp(0 - ($value / $b));
|
}
|
|
/** @return float|string */
|
protected static function calculateInverse(float $probability, float $alpha, float $beta)
|
{
|
$xLo = 0;
|
$xHi = $alpha * $beta * 5;
|
|
$dx = 1024;
|
$x = $xNew = 1;
|
$i = 0;
|
|
while ((abs($dx) > Functions::PRECISION) && (++$i <= self::MAX_ITERATIONS)) {
|
// Apply Newton-Raphson step
|
$result = self::calculateDistribution($x, $alpha, $beta, true);
|
if (!is_float($result)) {
|
return ExcelError::NA();
|
}
|
$error = $result - $probability;
|
|
if ($error == 0.0) {
|
$dx = 0;
|
} elseif ($error < 0.0) {
|
$xLo = $x;
|
} else {
|
$xHi = $x;
|
}
|
|
$pdf = self::calculateDistribution($x, $alpha, $beta, false);
|
// Avoid division by zero
|
if (!is_float($pdf)) {
|
return ExcelError::NA();
|
}
|
if ($pdf !== 0.0) {
|
$dx = $error / $pdf;
|
$xNew = $x - $dx;
|
}
|
|
// If the NR fails to converge (which for example may be the
|
// case if the initial guess is too rough) we apply a bisection
|
// step to determine a more narrow interval around the root.
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
|
$xNew = ($xLo + $xHi) / 2;
|
$dx = $xNew - $x;
|
}
|
$x = $xNew;
|
}
|
|
if ($i === self::MAX_ITERATIONS) {
|
return ExcelError::NA();
|
}
|
|
return $x;
|
}
|
|
//
|
// Implementation of the incomplete Gamma function
|
//
|
public static function incompleteGamma(float $a, float $x): float
|
{
|
static $max = 32;
|
$summer = 0;
|
for ($n = 0; $n <= $max; ++$n) {
|
$divisor = $a;
|
for ($i = 1; $i <= $n; ++$i) {
|
$divisor *= ($a + $i);
|
}
|
$summer += ($x ** $n / $divisor);
|
}
|
|
return $x ** $a * exp(0 - $x) * $summer;
|
}
|
|
//
|
// Implementation of the Gamma function
|
//
|
public static function gammaValue(float $value): float
|
{
|
if ($value == 0.0) {
|
return 0;
|
}
|
|
static $p0 = 1.000000000190015;
|
static $p = [
|
1 => 76.18009172947146,
|
2 => -86.50532032941677,
|
3 => 24.01409824083091,
|
4 => -1.231739572450155,
|
5 => 1.208650973866179e-3,
|
6 => -5.395239384953e-6,
|
];
|
|
$y = $x = $value;
|
$tmp = $x + 5.5;
|
$tmp -= ($x + 0.5) * log($tmp);
|
|
$summer = $p0;
|
for ($j = 1; $j <= 6; ++$j) {
|
$summer += ($p[$j] / ++$y);
|
}
|
|
return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x));
|
}
|
|
private const LG_D1 = -0.5772156649015328605195174;
|
|
private const LG_D2 = 0.4227843350984671393993777;
|
|
private const LG_D4 = 1.791759469228055000094023;
|
|
private const LG_P1 = [
|
4.945235359296727046734888,
|
201.8112620856775083915565,
|
2290.838373831346393026739,
|
11319.67205903380828685045,
|
28557.24635671635335736389,
|
38484.96228443793359990269,
|
26377.48787624195437963534,
|
7225.813979700288197698961,
|
];
|
|
private const LG_P2 = [
|
4.974607845568932035012064,
|
542.4138599891070494101986,
|
15506.93864978364947665077,
|
184793.2904445632425417223,
|
1088204.76946882876749847,
|
3338152.967987029735917223,
|
5106661.678927352456275255,
|
3074109.054850539556250927,
|
];
|
|
private const LG_P4 = [
|
14745.02166059939948905062,
|
2426813.369486704502836312,
|
121475557.4045093227939592,
|
2663432449.630976949898078,
|
29403789566.34553899906876,
|
170266573776.5398868392998,
|
492612579337.743088758812,
|
560625185622.3951465078242,
|
];
|
|
private const LG_Q1 = [
|
67.48212550303777196073036,
|
1113.332393857199323513008,
|
7738.757056935398733233834,
|
27639.87074403340708898585,
|
54993.10206226157329794414,
|
61611.22180066002127833352,
|
36351.27591501940507276287,
|
8785.536302431013170870835,
|
];
|
|
private const LG_Q2 = [
|
183.0328399370592604055942,
|
7765.049321445005871323047,
|
133190.3827966074194402448,
|
1136705.821321969608938755,
|
5267964.117437946917577538,
|
13467014.54311101692290052,
|
17827365.30353274213975932,
|
9533095.591844353613395747,
|
];
|
|
private const LG_Q4 = [
|
2690.530175870899333379843,
|
639388.5654300092398984238,
|
41355999.30241388052042842,
|
1120872109.61614794137657,
|
14886137286.78813811542398,
|
101680358627.2438228077304,
|
341747634550.7377132798597,
|
446315818741.9713286462081,
|
];
|
|
private const LG_C = [
|
-0.001910444077728,
|
8.4171387781295e-4,
|
-5.952379913043012e-4,
|
7.93650793500350248e-4,
|
-0.002777777777777681622553,
|
0.08333333333333333331554247,
|
0.0057083835261,
|
];
|
|
// Rough estimate of the fourth root of logGamma_xBig
|
private const LG_FRTBIG = 2.25e76;
|
|
private const PNT68 = 0.6796875;
|
|
// Function cache for logGamma
|
|
private static float $logGammaCacheResult = 0.0;
|
|
private static float $logGammaCacheX = 0.0;
|
|
/**
|
* logGamma function.
|
*
|
* Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
|
*
|
* The natural logarithm of the gamma function. <br />
|
* Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
|
* Applied Mathematics Division <br />
|
* Argonne National Laboratory <br />
|
* Argonne, IL 60439 <br />
|
* <p>
|
* References:
|
* <ol>
|
* <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
|
* Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
|
* <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
|
* <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
|
* </ol>
|
* </p>
|
* <p>
|
* From the original documentation:
|
* </p>
|
* <p>
|
* This routine calculates the LOG(GAMMA) function for a positive real argument X.
|
* Computation is based on an algorithm outlined in references 1 and 2.
|
* The program uses rational functions that theoretically approximate LOG(GAMMA)
|
* to at least 18 significant decimal digits. The approximation for X > 12 is from
|
* reference 3, while approximations for X < 12.0 are similar to those in reference
|
* 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
|
* the compiler, the intrinsic functions, and proper selection of the
|
* machine-dependent constants.
|
* </p>
|
* <p>
|
* Error returns: <br />
|
* The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
|
* The computation is believed to be free of underflow and overflow.
|
* </p>
|
*
|
* @version 1.1
|
*
|
* @author Jaco van Kooten
|
*
|
* @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
|
*/
|
public static function logGamma(float $x): float
|
{
|
if ($x == self::$logGammaCacheX) {
|
return self::$logGammaCacheResult;
|
}
|
|
$y = $x;
|
if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) {
|
if ($y <= self::EPS) {
|
$res = -log($y);
|
} elseif ($y <= 1.5) {
|
$res = self::logGamma1($y);
|
} elseif ($y <= 4.0) {
|
$res = self::logGamma2($y);
|
} elseif ($y <= 12.0) {
|
$res = self::logGamma3($y);
|
} else {
|
$res = self::logGamma4($y);
|
}
|
} else {
|
// --------------------------
|
// Return for bad arguments
|
// --------------------------
|
$res = self::MAX_VALUE;
|
}
|
|
// ------------------------------
|
// Final adjustments and return
|
// ------------------------------
|
self::$logGammaCacheX = $x;
|
self::$logGammaCacheResult = $res;
|
|
return $res;
|
}
|
|
private static function logGamma1(float $y): float
|
{
|
// ---------------------
|
// EPS .LT. X .LE. 1.5
|
// ---------------------
|
if ($y < self::PNT68) {
|
$corr = -log($y);
|
$xm1 = $y;
|
} else {
|
$corr = 0.0;
|
$xm1 = $y - 1.0;
|
}
|
|
$xden = 1.0;
|
$xnum = 0.0;
|
if ($y <= 0.5 || $y >= self::PNT68) {
|
for ($i = 0; $i < 8; ++$i) {
|
$xnum = $xnum * $xm1 + self::LG_P1[$i];
|
$xden = $xden * $xm1 + self::LG_Q1[$i];
|
}
|
|
return $corr + $xm1 * (self::LG_D1 + $xm1 * ($xnum / $xden));
|
}
|
|
$xm2 = $y - 1.0;
|
for ($i = 0; $i < 8; ++$i) {
|
$xnum = $xnum * $xm2 + self::LG_P2[$i];
|
$xden = $xden * $xm2 + self::LG_Q2[$i];
|
}
|
|
return $corr + $xm2 * (self::LG_D2 + $xm2 * ($xnum / $xden));
|
}
|
|
private static function logGamma2(float $y): float
|
{
|
// ---------------------
|
// 1.5 .LT. X .LE. 4.0
|
// ---------------------
|
$xm2 = $y - 2.0;
|
$xden = 1.0;
|
$xnum = 0.0;
|
for ($i = 0; $i < 8; ++$i) {
|
$xnum = $xnum * $xm2 + self::LG_P2[$i];
|
$xden = $xden * $xm2 + self::LG_Q2[$i];
|
}
|
|
return $xm2 * (self::LG_D2 + $xm2 * ($xnum / $xden));
|
}
|
|
protected static function logGamma3(float $y): float
|
{
|
// ----------------------
|
// 4.0 .LT. X .LE. 12.0
|
// ----------------------
|
$xm4 = $y - 4.0;
|
$xden = -1.0;
|
$xnum = 0.0;
|
for ($i = 0; $i < 8; ++$i) {
|
$xnum = $xnum * $xm4 + self::LG_P4[$i];
|
$xden = $xden * $xm4 + self::LG_Q4[$i];
|
}
|
|
return self::LG_D4 + $xm4 * ($xnum / $xden);
|
}
|
|
protected static function logGamma4(float $y): float
|
{
|
// ---------------------------------
|
// Evaluate for argument .GE. 12.0
|
// ---------------------------------
|
$res = 0.0;
|
if ($y <= self::LG_FRTBIG) {
|
$res = self::LG_C[6];
|
$ysq = $y * $y;
|
for ($i = 0; $i < 6; ++$i) {
|
$res = $res / $ysq + self::LG_C[$i];
|
}
|
$res /= $y;
|
$corr = log($y);
|
$res = $res + log(self::SQRT2PI) - 0.5 * $corr;
|
$res += $y * ($corr - 1.0);
|
}
|
|
return $res;
|
}
|
}
|