<?php
|
|
namespace PhpOffice\PhpSpreadsheet\Calculation\Statistical\Distributions;
|
|
use PhpOffice\PhpSpreadsheet\Calculation\ArrayEnabled;
|
use PhpOffice\PhpSpreadsheet\Calculation\Exception;
|
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
|
use PhpOffice\PhpSpreadsheet\Calculation\Information\ExcelError;
|
|
class StudentT
|
{
|
use ArrayEnabled;
|
|
/**
|
* TDIST.
|
*
|
* Returns the probability of Student's T distribution.
|
*
|
* @param mixed $value Float value for the distribution
|
* Or can be an array of values
|
* @param mixed $degrees Integer value for degrees of freedom
|
* Or can be an array of values
|
* @param mixed $tails Integer value for the number of tails (1 or 2)
|
* Or can be an array of values
|
*
|
* @return array|float|string The result, or a string containing an error
|
* If an array of numbers is passed as an argument, then the returned result will also be an array
|
* with the same dimensions
|
*/
|
public static function distribution(mixed $value, mixed $degrees, mixed $tails)
|
{
|
if (is_array($value) || is_array($degrees) || is_array($tails)) {
|
return self::evaluateArrayArguments([self::class, __FUNCTION__], $value, $degrees, $tails);
|
}
|
|
try {
|
$value = DistributionValidations::validateFloat($value);
|
$degrees = DistributionValidations::validateInt($degrees);
|
$tails = DistributionValidations::validateInt($tails);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
|
return ExcelError::NAN();
|
}
|
|
return self::calculateDistribution($value, $degrees, $tails);
|
}
|
|
/**
|
* TINV.
|
*
|
* Returns the one-tailed probability of the chi-squared distribution.
|
*
|
* @param mixed $probability Float probability for the function
|
* Or can be an array of values
|
* @param mixed $degrees Integer value for degrees of freedom
|
* Or can be an array of values
|
*
|
* @return array|float|string The result, or a string containing an error
|
* If an array of numbers is passed as an argument, then the returned result will also be an array
|
* with the same dimensions
|
*/
|
public static function inverse(mixed $probability, mixed $degrees)
|
{
|
if (is_array($probability) || is_array($degrees)) {
|
return self::evaluateArrayArguments([self::class, __FUNCTION__], $probability, $degrees);
|
}
|
|
try {
|
$probability = DistributionValidations::validateProbability($probability);
|
$degrees = DistributionValidations::validateInt($degrees);
|
} catch (Exception $e) {
|
return $e->getMessage();
|
}
|
|
if ($degrees <= 0) {
|
return ExcelError::NAN();
|
}
|
|
$callback = fn ($value) => self::distribution($value, $degrees, 2);
|
|
$newtonRaphson = new NewtonRaphson($callback);
|
|
return $newtonRaphson->execute($probability);
|
}
|
|
private static function calculateDistribution(float $value, int $degrees, int $tails): float
|
{
|
// tdist, which finds the probability that corresponds to a given value
|
// of t with k degrees of freedom. This algorithm is translated from a
|
// pascal function on p81 of "Statistical Computing in Pascal" by D
|
// Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
|
// London). The above Pascal algorithm is itself a translation of the
|
// fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
|
// Laboratory as reported in (among other places) "Applied Statistics
|
// Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
|
// Horwood Ltd.; W. Sussex, England).
|
$tterm = $degrees;
|
$ttheta = atan2($value, sqrt($tterm));
|
$tc = cos($ttheta);
|
$ts = sin($ttheta);
|
|
if (($degrees % 2) === 1) {
|
$ti = 3;
|
$tterm = $tc;
|
} else {
|
$ti = 2;
|
$tterm = 1;
|
}
|
|
$tsum = $tterm;
|
while ($ti < $degrees) {
|
$tterm *= $tc * $tc * ($ti - 1) / $ti;
|
$tsum += $tterm;
|
$ti += 2;
|
}
|
|
$tsum *= $ts;
|
if (($degrees % 2) == 1) {
|
$tsum = Functions::M_2DIVPI * ($tsum + $ttheta);
|
}
|
|
$tValue = 0.5 * (1 + $tsum);
|
if ($tails == 1) {
|
return 1 - abs($tValue);
|
}
|
|
return 1 - abs((1 - $tValue) - $tValue);
|
}
|
}
|